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A phase diagram is mapped out for a "2�89 vortex lattice model in 
which vortex filaments lie in a plane, while both the velocity field and the Green 
function are three-dimensional. Both positive and negative" temperatures are 
considered. Various qualitative properties of turbulent states and of the super- 
fluid 2 transition are well verified within the limitations of the model; the per- 
colation properties of vortex transitions are exhibited; the differences between 
superfluid and classical vortex motion are highlighted, as is the importance of 
topological constraints in vortex dynamics; an earlier model of intermittency is 
verified. 
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colation. 

1. INTRODUCTION 

Statistical analyses of turbulent  flows and of three-dimensional superfluid 
dynamics based on vortex lattice representations began to appear almost 
simultaneously and rely on strikingly similar tools. In the superfluid case, 
a three-dimensional analog of the Kosterl i tz-Thouless renormalizat ion 
analysis of the ).-transition has been offered by Williams I1~ and Shenoy~AJ; 
it relies on Shenoy's ansatz, which assumes a polymerlike structure for a 
vortex filament near the critical temperature and uses a "magnet" represen- 
tations; see below. (A "polymer" here and below means "equal probabili ty 
self-avoiding walk"). In the case of Euler ( nonquan tum)  turbulence, 
vortices are attracted to an infinite-temperature state whose properties are 
related in an appropriate model to properties of polymers, t3'4~ In both 
cases, critical exponents are related to the Flory exponent  of polymer 
theory and transi t ion points can be characterized as percolation thresholds; 
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indeed, a simple model has been used tS) to suggest that the 2-transition and 
the "turbulent state" can be connected by "universality curves" in a certain 
phase diagram, and a generalization of the Shenoy-Williams analysis to 
classical fluids has been offered. 161 

Both analyses as well as their mutual relation are somewhat 
speculative, and an effort has been made to back them by numerical 
analyses of lattice vortex models 15'7"8) as well as by X Y  model calcula- 
tions tg~ and by theoretical analyses of simplified models, t4~ In the present 
paper we pursue the artalysis of vortex theory in both the turbulent and the 
superfluid cases, as well as of their mutual relation, by examining a still- 

" 9  1,, simplified vortex model with long-range interactions in ,~ dimensions. 
The numerical method is a fairly standard Metropolis canonical sampling 
based on a "magnet" representation of vortex filaments. The present model 
is a useful intermediate step before a full three-dimensional calculation 
because it is much cheaper to run and the results are relatively easy to 
interpret; it allows careful convergence studies and bypasses some of the 
difficulties connected with the gauge freedom of the magnet representation. 
It also allows for dense collections of vortex filaments, unlike some of the 
previous work, and with the appropriate caveats, the results appear to be 
physically relevant. 

In two and three space dimensions at positive temperatures, the 
vortex/magnet lattice model with no topological constraints is dual to the 
X Y  model t~~ and earlier phase diagrams for that model t~l~ provide a useful 
source of comparisons. 

The numerical results below support, in the main, the theories quoted 
above, especially when allowances are made for the unusual dimensionality 
of the model. The differences between classical.and superfluid vortices are 
highlighted and this contrast constitutes one of the main results of the 
present paper. The main surprise is that the ).-transition and the turbulent 
state turn out to live on the same branch of a transition curve in a 
temperature/chemical potential phase diagram and not on two different 
branches as suggested in the short-range interaction model of ref. 5. The 
displacement of that branch from ITI = ~  (classical fluids) to T small 
(superfluids) appears to be a consequence of the difference in topological 
constraints between Euler vortex motion and XY-model vortices. This 
difference may also account for the difference between the values of the 
standard Flory exponent and the one observed in the X Y  model. In other 
words, it is claimed that the equilibrium phase diagrams of the X Y  model 
and of the classical vortex system are qualitatively similar; the difference in 
the precise location of the phase boundaries and in the value of the critical 
exponents, and thus in the universality class, can be ascribed to the dif- 
ference in the constraints. To the extent that one can extrapolate from the 
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XY model to a superfluid vortex system, it is the difference in topological 
constraints, and not the quantization of the superfluid vortices, that is most 
responsible for the differences between the latter and classical vortices. 

The paper is organized as follows: after a brief review of negative 
temperatures (needed in the sequel), of earlier work on vortex models of 
turbulence and of the superfluid transition, and of basic facts about the 
magnet representation, we present our model, its phase diagram, and other 
properties. Conclusions are then presented regarding the relation between 
vortex phase transitions and correlated percolation, and regarding vortex 
and superfluid phase transitions, intermittency in turbulence, and the non- 
Euler nature of superfluid vortex motion. 

2. N E G A T I V E  T E M P E R A T U R E S  

We shall use below negative temperatures T; for the sake of complete- 
ness, we begin by a short account, following Landau and Lifshitz. 1'2~ If S 
is the entropy of an isolated system and E the energy, then T-L = dS/dE; 
in principle, T can be positive or negative. 

Suppose two isolated systems, one with energy E~ and entropy S, and 
one with energy E_, and entropy $2, are brought into contact at time t = 0. 
Then E =  E, + E_, remains constant, while dS/dt > 0, where S =  S, + $2 at 
t = 0. A quick calculation yields 

0 < d S  ( 1  l )dE,  

(with a symmetric equation involving Ez). If T, > 0 and T,_ < 0, dE,/dt > 0; 
thus T <  0 is "hotter" than T >  0. Define fl = T-~; in terms of r,  one moves 
from colder to hotter temperatures as fl varies from + ~  to 0 through 
positive values, and then from 0 to - o o  through negative values. Now, 
f l = 0  ([TI = oo) is the boundary between T > 0  and T < 0 ,  and the maxi- 
mum of S = S(E). 

As was discovered by Onsager ~3~ (modern treatments can be found in 
refs. 4 and 14), the temperature of a classical vortex system in the plane is 
usually negative. A similar conclusion was reached in ref. 3 for sparse (i.e., 
low-density) vortex filament systems in three dimensions, and it was con- 
jectured that the conclusion holds for dense systems as well. On the other 
hand, superfluid vortices belong to a system with positive temperature T. 

Note that if T >  0, the Gibbs probability, proportional to e -E/r, favors 
states with low energy E, while for T < 0 ,  it favors states with high 
energy E. 
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3. SELF-AVOID ING W A L K S  A N D  THE EQUIL IBRIUM 
STATISTICS OF CLASSICAL VORTICES 

A self-avoiding walk (SAW) on a cubic lattice is a sequence of N 
lattice bonds such that no site is visited twice (Fig. 1). A family of SAWs 
is a polymer if all configurations are equally likely. For a polymer, the root 
mean square average ( r u )  of the length of the straight line that joins 
bond 1 to bond N on the SAW satisfies the scaling law ( r u )  ~ N ~ for large 
N, where ~ is the Flory exponent. Flory's approximate mean-field theory 
yields ct=3/5t~51; modern computing yields ct~0.59. (~61 D = l / o t  is the 
fractal dimension of the polymer. 

A lattice vortex is a family of oriented SAWs, each configuration 
having probability Z-~ e x p ( - E / T ) ,  where Z is the partition function, T is 
the temperature, and E is the hydrodynamic energy that is produced by a 
vorticity field supported by the oriented SAW. We shall refer to a con- 
figuration of a lattice vortex as a (lattice) vortex filament. Lattice filaments 
should be closed; this constraint is easily added to what follows and will be 
disregarded. An appropriate energy can be calculated as follows: the energy 
of a fluid is E =  ~ dx u 2, where [] is the velocity. Integration by parts and 
use of a Green function for a three-dimensional Laplacian yield (17~ 

i dx, dx Ill 

where ~ is the vorticity, ~ = curl u. To find a lattice version of (1), suppose 
each vortex bond is smeared into a thin tube of vorticity. E can be 

N . . . .  

approximated by 
E = E i + N p  (2) 
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Fig. 1. Self avoiding walk on a lattice. 
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where L J are multiindices denoting the origins of bonds occupied by the 
vortex, F,  is a vector pointing in the direction of the bond issuing from I 
whose magnitude LFII = F~ equals the circulation of that vortex, lI-JI is 
the straight-line distance between the bonds issuing from I and from J, and 
the double sum E~ is the "interaction energy," which one gets from (1) 
when x, x'  do not belong to the same smeared bond. # is the contribution 
to the energy of that part of the Lamb integral (1) where x, x'  belong to 
the same bond; it is a function of the radius of the smeared bond and of 
the distribution of vorticity in that bond. ~s' We assume all such contribu- 
tions are equal, and if there are N bonds, their "diagonal" contribution to 
the energy is N/~. The quantity # is also known in this context as the 
"chemical potential." It is analogous to the two-dimensional "chemical 
potential" of two-dimensional vortex theory, ~'9' which is an approximation 
to the chemical potential for sparse vortex systems. This name is a mis- 
nomer, as is the other name for p, "energy per unit length," since the 
energy associated with a bond depends on all its interactions and, further, 
a refinement of the lattice takes some of the energy associated with a bond 
from # into the double sum E;. However, in the absence of a better term, 
we shall call /~ the chemical potential without quotation marks or further 
comment. 

The probability of each lattice vortex configuration C is now 
P(C) = Z - '  e x p [ - E ( C ) / T ] ,  with E(C) given by (2). If N, # are constants, 
both Z and e x p ( -  E/T) have a factor e x p ( -  Ng/T) which cancels out, and 
only the interaction energy E,. matters. A lattice vortex filament with N 
finite models loosely a smooth vortex. ~31 A vortex imbedded in an Euler 
flow typically stretches and folds, and N increases. If the mean energy of 
the vortex remains constant, T decreases. A simple argument shows that a 
smooth vortex corresponds to T < 0 ,  and as T decreases, the temperature 
of the vortex tends toward I TI = oo (p = 0). For Euler flow, in the limit 
N--* oo, /~=0 is an uncrossable barrier. ~3'4' For T > 0 ,  vortex filaments 
become very folded, with a fractal dimension 3 (ct = 1/3); in the presence of 
a small viscosity, folded vortices reconnect into small loops, and /~ = 0 is 
then the boundary between states with long, smooth vortices and states 
with small disconnected vortex loops, i.e., a phase transition. This phase 
transition also looks like a percolation threshold: long vortices for T <  0, 
small vortices for T > 0  (see below). At f l = 0  (ITI = ~ ) ,  the vortex is a 
polymer (E/T=O), and one obtains a self-similar spectrum of the 
Kolmogorov form E(k)~k -~, with ~, the Kolmogorov exponent. The 
heuristic analysis of ref. 20 together with scaling relations of ref. 21 yield a 
relation between ~ and ct, the Flory exponent: ), = 5-2/c t .  Thus the Flory 
mean-field value ct = 3/5 yields the Kolmogorov value of the exponent, 
ct = 5/3; the numerical value of the exponent yields a small correction to 
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this value, in the right direction. ~2z~ The fl = 0 transition point is the only 
physically relevant equilibrium, as is consistent with general considerations 
on lattice field models, t23~ 

One may well wonder why the support of the vorticity has to be 
self-avoiding. If a lattice vortex covers a lattice bond more than once, the 
energy (2) is infinite, violating an obvious requirement. On a cubic lattice, 
a lattice vortex could visit a lattice site more than once without incurring 
an infinite energy; local interactions vanish because the lattice bonds that 
meet at a given site are o~thogonal. We do not allow repeated site visits 
both because the local orthogonality is nongeneric in a continuum theory 
and because the approximation (2) misrepresents the interaction between 
nearby vortex bonds. A generic vortex with accurate interactions on all 
scales would associate a large energy with any type of self-intersection. 

As always, changes in /~ are connected with changes in N. For a 
classical incompressble fluid, conservation of volume reduces the cross 
section of a vortex filament as it stretches; an argument given in ref. 8, 
based on a microcanonical sampling of vortex configurations, shows that 
stretching, folding, and conservation of volume are incompatible for vortex 
filaments that remain on a regular lattice. They become compatible on 
appropriate irregular lattices, giving rise to intermittency. A continuum 
version of this argument can be found in ref. 22. 

The analysis just sketched applies to a single filament or to a sparse 
collection of filaments. The present paper is a step toward the analysis of 
dense systems of vortices in three dimensions. 

Finally, turbulence in a classical fluid is not an equilibrium process. The 
relevance of the equilibrium model presented here to classical turbulence is 
discussed in detail in ref. 4. It is argued there that the establishment of a 
Kolmogorov spectrum from smooth initial data is an irreversible process; 
once that spectrum is established, the dynamics in the inertial range should 
be in the neighborhood of an equilibrium and analyzable by an appropriate 
variant of the fluctuation-dissipation theorem. The analogous results in 
two- dimensional turbulence are well-established; in three space dimensions 
this argument is at variance with well-accepted models, and the reader is 
welcome to put the word "turbulence" in quotes if he or she desires. 

4. SUPERFLUID VORTICES A N D  THE XY M O D E L  

Another system with vortices is a superfluid away from absolute zero. 
At temperatures below the critical temperature T;. a superfluid has elemen- 
tary excitations that consist of small-diameter vortex loops as well as 
several kinds of sound waves. Long vortices appear at T =  T;., destroying 
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superfluidity. Long vortices can also appear for T <  T~. if the external 
circumstances are appropriate (e.g., in the presence of rotation or heating). 

It is often claimed (see, e.g., ref. 24) that though superfluidity is a 
quantum effect, superfluid vortices behave like classical vortices. It is 
further claimed that the main difference between classical and quantum 
vortex motion is the quantization of superfluid circulation; it can, however, 
be easily deduced from the convergence theory for vortex approximations 
(see, e.g., refs. 25 and 26) that under most circumstances, this quantization 
has a very minor effect. We shall bring out below much more important 
differences between classical and quantum vortices: They have different 
topological constraints, different stretching properties, and different ranges 
of possible temperatures and chemical potentials. 

Since the order parameter in the 2-transition is a complex wave func- 
tion, of constant amplitude for a given T, the superfluid vortex transition 
is believed to belong in the same universality class as the transition in the 
X Y  model, which is a lattice model in which every lattice site is occupied 
by a vector spin tr of unit modulus, with a Hamiltonian H = - K  Z trf- trj, 
where the dot denotes inner product, K is a coupling constant, and the 
summation is over all sites and all near neighbors. A vortex in the X Y  
model is a plaquette around which the angle between cr and a fixed 
direction varies by 2n. On a three-dimensional lattice, the centers of these 
plaquettes can be connected into vortex lines. The X Y  model is dual to a 
vortex model, t~~ i.e., the partition function can be rewritten as the partition 
function of a vortex system with a Hamiltonian just like (2), with p =/~ a 
positive number. This dual model does not allow a lattice bond to be 
covered twice with a positive probability, but does allow a site to be visited 
twice; in addition, there is no requirement that circulation around vortex 
lines be preserved, as is necessary in classical flow. 

One can generalize the X Y  Hamiltonian to H - - - K S t r i . t r i + # N ,  
where N is the number of vortex points and p is the added chemical poten- 
tial (remember that even when p = 0 in this last formula, the corresponding 
vortex model has a positive chemical potential). The resulting model has 
two parameters (T and/~) and its phase diagram has been mapped out for 
T >  0 in two dimensions in the original Kosterlitz-Thouless analysis ~9~ and 
in three dimensions by Kohring and S h r o c k / ~  (Note that in ref. 11 the 
authors also map out the K <  0 region, which, as far as is known, is not 
dual to a vortex system with T < 0 . )  

A widely believed vortex picture of the transition from a superfluid 
state to a normal helium state is as followstl'2'27): As T increases toward 
T;., the number of vortex excitations increases, and they allay each other's 
energy through polarization, i.e., large loops arrange smaller loops so as to 
reduce the energy. Eventually, at T =  T;., large loops form and superfluidity 
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is lost; T:. thus resembles a percolation threshold for vortex loops (see 
below). The Shenoy-Williams theory builds a renormalization flow on this 
picture; the resulting parameter flow is incompletely described (as can be 
predicted from general principlest27~; to complete its specification, Shenoy 
introduced an ansatz that relates vortex radius to vortex scale; this ansatz 
can be related to an assumption that vortex lines at T;. have structures of 
polymers; the critical exponents depend on the value of the Flory exponent 
ct. The Shenoy-Williams theory is formulated in magnetization variables, 
about which more will be said below. 

The apparent similarity between the superfluid transition at 7:. and the 
turbulent state at I TI = oo is of great interest, in particular because the 
fractal properties of the turbulent state are better understood, and because 
a relation between the two states can justify the translation of the Shenoy- 
Williams theory to the classical case, as in ref. 6. An earlier analysis of this 
relation, in a model with short-range interactions, was presented in ref. 3. 

5. M A G N E T I Z A T I O N  V A R I A B L E S  A N D  V O R T E X  
PERCOLATION 

We now present some technical material needed for our model and for 
explaining the percolation aspects of vortex phase transitions. 

The general formulation of magnetization variables and their gauge 
invariance can be found in ref. 28. Earlier work can be found in refs. 1, 2, 
29, and 30. Consider the Euler equation for incompressible flow: 

t~,u + (u" V)u = - g r a d  p (4) 

div u = O  (5) 

where u --- (ul, u2, u3) is the velocity, p is the pressure, t is the time, and V 
is the differentiation vector. At t =0 ,  write m = (mj, m 2, m3) = u + grad q, 
where q is an arbitrary scalar. One can veify that m satisfies 

a,mi + (u. V) mi = --mjOiuj (6) 

where u = Pm, and P is the orthogonal projection that projects arbitrary 
vector fields on their divergence-free part. ~3~ Equation (6) is equivalent to 
the Euler equation (4); since u is the vector potential for the vorticity 

= curl u, the addition of grad q to u is a gauge transformation; the gauge 
freedom in Eq. (6) gives rise to the constraint div u = 0. 

One can use this gauge freedom to "localize" the vorticity. For 
example, consider a vortex ring. Its exterior is not simply connected. Pick 
a surface _r that spans the ring. In its exterior, which is simply connected, 
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one can write u = - g r a d  ~, and use this 0 in m = u + grad ~. The m will be 
supported on X. One can further break s into small pieces and calculate 
the velocity field induced by each piece. A comparison of that velocity field 
with the velocity field due to a small vortex loop shows that what one has 
obtained is a representation of a large vortex loop in terms of small vortex 
loops. The equations of motion for the loops, which can be deduced from 
(6), form a Hamiltonian system. 

The lattice version of this construction is straightforward: Consider a 
closed lattice vortex. Span it by a union of lattice plaquettes. If the vortex 
is knotted, it may have to be simplified by simple surgery so that the 
spanning set of plaquettes does not self-intersect. Attach to each plaquette 
in the span a "magnet" or "elementary vortex" with the same circulation F 
as the original vortex and oriented so that the union of the elementary 
vortices yields the original vortex (Fig. 2). Note that vortex bonds may 
cancel at edges common to two "magnets." The result is the representation 
of large loops as unions of magnets (the quotation marks are now dropped). 

It is obvious that this representation is not unique, just as q above was 
not unique. This nonuniqueness, a residual gauge freedom, may present 
interesting problems when a magnet representation is used to calculate 
entropies and free energies for vortex systems. 

The magnet representation gives rise to a percolation problem for 
vortex filaments. Vortices are edges of clusters of same-orientation magnets. 
There exist infinitely long vortices when the occupied plaquettes form 
infinite connected same-orientation clusters while empty plaquettes also 
form an infinite cluster. What is a connected cluster depends on whether 
two magnets that touch at one point only form one vortex or two vortices 
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Fig. 2. A vortex as the edge of a magnet  cluster. 
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Fig. 3. Neighbors or not? 

(Fig. 3); we shall decide this issue when we discuss the numerical results. 
This decision affects the value of the corresponding Flory exponent (see, 
e.g., ref. 32). 

6. THE 2 ~ - D I M E N S I O N A L  M O D E L  

We now present our simplified vortex model. All vortex filaments lie 
in a plane (unlike the vortex filaments in a two-dimensional flow, which are 
orthogonal to the plane of the motion); F =  1. The velocity field is given by 
the three-dimensional Biot-Savart law 

U(X) ~__ 1 ~/ (X -- XX) X l ' /  
i x_x~ l  3 (7) 

where xt is the center of the vortex bond issuing from I, x is an arbitrary 
point, and x denotes a cross-product. This is the discrete version of the 
usual relation between vorticity and velocity in three dimensions; u(x) has 
typically three nonzero components. The energy of the system is given by 
(2). Both (7) and (2) are based on the three-dimensional Green function. 
The use of a three-dimensional Green function and the presence of vortex 
filaments can be expected to endow the model with properties intermediate 
between those of two-dimensional and three-dimensional models, as will 
indeed turn out to be the case, hence the name "2.5 dimensional model." 

The vortex configurations in their plane are generated by magnets of 
one orientation. We shall refer to the resulting vortex filaments, the edges 
of magnet clusters, as "macroscopic vortices." It is easy to see that even 
when the magnets all have one orientation (say, counterclockwise), the 
resulting macroscopic vortices can have either clockwise or anticlockwise 
orientation (for example, assume all plaquettes in the plane but one are 
occupied). However, some possible macroscopic vortex configurations 
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Fig. 4. A vortex configuration that cannot be built up with one-orientation magnets. 

cannot be generated by one-orientation magnets (see, for example, Fig. 4). 
To make sure that all macroscopic vortices can appear, one has to accept 
that some of them can be generated in more than one way, and the choice 
has been made not to do so. All the magnets have circulation 1, and thus 
all the macroscopic vortices have circulation 1. Thus, in this model, the 
nonuniqueness of m can be circumvented. 

Consider in particular an m • m sublattice in the plane, with bond 
length 1. The energy of this lattice is, as in (2), E = Z  Ft" Fj/II-JI  +~N,  
where N is the number of occupied bonds (remember that the canceled 
vortices between occupied plaquettes are not counted). /~ is the chemical 
potential. The problem has two physical parameters: T (or/3 = T -  ~) and #. 

The problem presented by the boundary condition at the edges of a 
finite sublattice is severe: the Green function decays like 1/m, while the 
boundary length grows like m. If the correlation functions decay rapidly, 
this may not matter, and if the correlation functions decay slowly, they 
may do so even if the domain is finite. What we did was make the vorticity 
periodic and cut the Green function off at separations greater than m/2, so 
that each vortex bond interacts only with one other bond, and not with an 
infinite array of images. We shall check that the results are independent 
of m, and thus that the approximation involved is presumably harmless. 

The model just formulated will be solved by a straightforward 
Metropolis sampling, in which the steps consist of an addition or subtraction 
of individual magnets. Each such move changes the status of four vortex 
bonds; the corresponding interaction energies and chemical potentials 
must be added or subtracted, which costs O(m 2) operations per move. The 
number of moves for convergence is relatively modes t - -a  few thousands of 
steps for m = 20. All quantities we shall calculate converge rapidly in m: 
none of the results below changes by more than the modest statistical error 
when m increases beyond 20, and some remain substantially unchanged as 
m goes down to m = 6 (!), in agreement with the observation in ref. 11 that 

822/76/3-4-7 
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a relatively small lattice is sufficient to provide information about the 
phase diagram. All the results below come from runs with either m = 20 or 
m = 30. The errors in Fig. 5 and 12 are negligible, i.e., the uncertainty is 
comparable with the thickness of the lines in the figures; finite-size scaling 
adds little. The error bars in Fig. 7 are based an a statistical analysis only; 
there is presumably an added systematic error due to the finite size of the 
lattice. This error makes it impossible to decide whether the specific heat 
has a singularity at the transition. Note, however, that the location of the 
transition is determined with great accuracy. 

Note that in the phase diagram the factor (8~) -I in the energy has 
been omitted, thus redefining the temperature in the case of the classical 
fluid; the absence of this factor is in agreement with usual practice in the 
case of the X Y  model. 

7. T H E  P H A S E  D I A G R A M  

The numerical calculation produces the phase diagram in the (fl, p) 
plane shown in Fig. 5. Note that the fl axis is labeled so that the tem- 
perature increases from left to right; T >  0 is on the left. Phase I is a "solid" 
phase, as shown in Fig. 6a, that exists for T low enough and # low enough, 
when the interaction energy Ei is at a minimum which produces this phase. 
Another branch of phase I is produced for # large and T < 0 ,  IT[ large, 
when the high energy #N can overwhelm any negative contribution from 
Ei. Phase lI is a "gas" phase (Fig. 6b). Vortex loops are few and far 
between. Phase II is produced for T small enough and # large enough. 
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Fig. 5. The phase diagram. 
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Phase III  is the intermediate "vortex liquid" phase, and has several 
subregions. In region IIIc the mean energy < E )  is negative, which is non- 
physical. In region I I I ,  (Fig. 6c) the vortex system is more  disordered than 
in region I I I  b (Fig. 6d); the transition between IIIa and I I I  b is gradual. 

The transitions between phases I and III ,  II  and III ,  and I and II are 
second order, in the sense that  either the specific heat has a singularity or 
its derivative with respect to T does, as is the case in three space dimen- 
sions, ~ but not in two. 1~9) To  show the nature of the transition, we 
exhibit in Fig. 7 the specific heat C as a function of p for fl = 1. The sharp 
peaks are well defined, and the I-- .  I II  and III  ~ II transitions are well 
separated. 

( m l - m ~ m - l i  
| H H H K N N N N N N H N I  
I H H R H B H B H H H K H I  
t H B H H H B H K H N H H i  
[ l i i I l I i i l i l i l  
i i l i l l i l l i l l i i  
I l i l l l i l l i l l l l  
| l l l l l l l l l l l l i  
l l i l i l i l i l l l l l  
| l l l l l l l l i l l l l  
l l i l l l i l i l l l l l  
| l l l l l l i l i l l l i  
[ l l l l l l l l l l l l l  
l i l l l i l i l i l l l l  
l l i l i i l l l i l l i l  
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I l l l l l i l i l l l i l  
| i l i i l i l l i i l l l  
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Fig. 6. The phases: (a) "solid" I; (b) "gas" II; (c) "liquid" Ilia; (d)"more organized 
liquid" IIIb. 
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Fig. 7. 
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Specific heat  as  a funct ion  of  chemical  potent ia l ,  fl = 1. 

Note that the "liquid" phase transition BD in Fig. 5 is located in the 
T >  0 region. In the region between the arc BD and the/~ axis longer vor- 
tices can exist because interactions cancel each other, i.e., polarization and 
screening appear. The transition along BD fits the description of the 
2-transition. The boundary AB of the "solid" phase in the T >  0 half-plane 
presumably has a horizontal asymptote # =/~; if there is an analogous 
phase transition in three dimension, then ~ ~< Po, where #o is the chemical 
potential in the vortex model that corresponds to zero added chemical 
potential in the X Y  model. There is no direct way to evaluate #o in 2�89 
dimensions. We shall argue below that the arc BD also corresponds to the 
phase transition in the classical vortex systems; this transition has been 
displaced from the line f l = 0  by the assumptions in our model, which 
allows self-intersection (see Fig. 6). Note that in three dimensions the arc 
analogous to the arc B'D crosses the p axis, c~11 but its analog in two dimen- 
sions does not. t19) 

There may be another transition in the region T <  0, ~ <0;  it is of no 
physical interest and has not been mapped out. 

In Fig. 8 we reproduce the lines of constant ( E )  in the (fl, k~) plane 
(note the change of scale). On the whole, if T decreases (allowing for the 
unusual meaning of this phrase when T < 0 )  and ( E )  remains constant, p 
must increase, as is heuristically obvious. 

In Fig. 9 we display the average bond occupation fraction s (number 
of vortex legs divided by m2). In phase I, when all the bonds are occupied, 
s = 2. Along the p axis, the model is not well defined, but one can check 
that the limit of the model as fl ~ 0 from either side is indistinguishable 
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Fig. 8. Constant-energy curves in phase diagram. 

from what one would get by placing magnets on the plaquettes, with a 
probability p = 1/2 of any plaquette being occupied and each plaquette 
being independent of the others. In this case, s = 0 . 9 1  (sO-1 because of 
leg cancellation between neighboring plaquettes). Except for large p, s 
increases as T decreases or as ~ increases, as intuition would indeed 
suggest. 

III c 

I 
I 0 

~ .----- 1.0 
0.8 

"'"',,,, _;L 
Fig. 9. Curves along which the fraction of occupied bonds is constant. 
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Fig. 10. 

"-' ~"10 X 

Spin-spin correlation functions: (1) f l=  1, p = 2 (phase II); (2) f l=  - 2 ,  p = 1 
(phase llIb); (3) fl = -0 .1 ,  ,u = 1.75 (phase IIIa). 

No effort has been made to determine the critical exponents at the 
transitions, since they are not likely to be independent of the dimen- 
sionality of the problem. 

In Fig. 10 we display the "spin-spin"  correlation function at several 
pairs of values (fl,/~). In a two-or  three-dimensional XY model, a phase ~b 
(angle between spin and a fixed direction) is defined at every lattice point, 
with grad ~b = u, u is the local velocity field. In 2�89 dimensions we define, by 
analogy, a spin ~7=(u3-Fe)/lu3.-I-e I if u~+evLO, and a = 0  if //3-'l-e=0, 
where u3 is the velocity out of the plane as given by (7) and e is a small 
parameter  (here, e =  1 0 - 6 ) .  Then a is either + 1 or - 1 .  The sign of tr 
changes as vortices are crossed, in analogy to the effect of  vortices on ~; e 
is here to make sure that  if there are no vortices, all the spins are aligned. 
The correlation function S ( x ) a t  x is S ( x ) =  (a(x)a(0))/(a2(0)), where 
the origin is arbitrary,  and x is less than m/2 to avoid edge effects on the 
periodic lattice. In Fig. 10 we summarize  the variat ion in S(x) as one 
moves in the phase diagram. Curve 1 corresponds to fl = 1, /~ = 2, i.e., a 
point in the vortex "gas" phase; one can see long-range order. Curve 3 
corresponds to f l =  -0 .1 , /~  = 1.75 (region III~); the order is lost. Curve 2 
corresponds to f l = - 2 ,  /~ = 1 (region IIIb); some order  is recovered, in 
agreement  with what  we know from the sparse vortex model,  TM where 
order is found for T <  0. 

8. PHASE TRANSIT IONS AS PERCOLATION THRESHOLDS; 
THE FLORY EXPONENT 

Both the 2-transition a n d t h e  turbulent  state were described earlier as 
percolation thresholds, in which large organized vortices give way to 
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isolated vortex loops (or vice versa, depending on which side one is coming 
from). In refs. 5 and 33 the phase transition was identified by percolation 
properties. Does this identification of the transition along the B'D arc of 
Fig. 5 hold up in our model? 

In site percolation problems, a set of occupied sites that can be 
reached from one of them by stepping only on occupied sites is called a 
cluster; a similar definition holds for bond percolation. In independent 
percolation, in which sites or bonds are occupied with probability p and 
the probabilities of two sites being occupied are independent of each other, 
the probability P that there exists an infinite cluster is 0 for p < Pc and 1 
for p > Pc; Pc is the percolation threshold. Connections between polymer 
theory and percolation have been explored, e.g., in ref. 34. Our vortices 
here have boundaries of clusters in a "correlated" plaquette percolation 
problem, where the probabilities of two plaquettes being occupied are not 
independent. 

On a finite m x m lattice, the probability of a numerically generated 
cluster in an independent percolation problem crossing the lattice from side 
to side is near 0 for p < P c - e ( m )  and near 1 for p > Pc + e(m), where 
is a small quantity that decays with m. At p =  Pc, one might expect a 
probability q, 0 < q < 1, that a cluster cross the lattice, as a result of edge 
effects. Efficient algorithms for calculating Pc accurately in independent 
percolation problems exist, but do not readily generalize to correlated 
percolation. 

The presence or absence of vortex percolation (i.e., of very long 
vortices) depends on what one defines as "neighboring plaquettes." If two 
plaquettes are viewed as neighbors only when they have a common bond, 
there will be very few large clusters. Here we use the same convention as 
was made in ref. 5: Suppose the plaquettes have centers at (i, j), i, j 
integers. The plaquette at (i, j), i + j even, is connected to the plaquettes at 
( i+  1 , j +  1) and ( i -  l , j -  1) (to the northeast and southwest), but is not 
connected to the plaquettes at ( i + l , j - 1 )  (southeast) or ( i - l , j + l )  
(northwest). The opposite is assumed when i + j  is odd. One can verify that 
the resulting percolation problem is equivalent to a bond percolation 
problem on a square lattice with Pc = 1/2. Other connections can be found 
that also lead to Pc = 1/2. Vortex lines (edges of clusters) with our conven- 
tion look as in Fig. 11. 

In Fig. 12 we display the variation of the probability P that there 
exists a vortex thai crosses the m x rn lattice as one crosses the BD trans- 
ition line. In the example, # = 1.75 and ~ varies. The transition, marked by 
an arrow, is near/~ = 0.85. We have P = 0 in the "gas" phase I and P >  0 
in phase III. The probability P remains less than 1 for all /~ in phase III; 
indeed, one expects 0 < P < I  on the line /~ = 0  when the percolation is 
independent with p = Pc = 1/2. It is as if the whole region III  were at the 
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Fig. 11. Magnet cluster edges according to the convention in the text. 

threshold, with the arc BD as the threshold of the threshold. The charac- 
terization of the transition by means of a percolation property survives; the 
vortices have an increasing probability of crossing the lattice as fl ~ - o o  
o r / a ~ O .  

The Flory exponent ~ (which can be defined here as the inverse of the 
fractal dimension of the percolating vortices) is calculated at the transition 
line as 0.55 + 0.02, a fair agreement with the value 4/7 ~ 0.57... of independ- 
ent percolation, c35~ However, this determination is not accurate, and one 
should not jump to conclusions. One can readily estimate the amount of 
work required to yield several good digits in ~ and see that it is beyond 
reach at the moment. 

This exponent is below the c~=0.75 value for two-dimensional 
polymers, as can be expected from the fact that the vortices can self-inter- 

Fig. 12. 
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sect. The topology of the vortices is that of XY-model vortices (see below), 
and this observation is in qualitative agreement with the numerical obser- 
vations of Epiney, c9) who found an 0t markedly below the Flory value for 
X Y  vortices in three dimensions. Thus the Shenoy ansatz tz~ may have to be 
slightly revised. 

9. CORRESPONDENCE WITH THE SPARSE CLASSICAL 
VORTEX MODEL; INTERMITTENCY 

We now compare the results obtained here with the sparse vortex 
modelJ 3"4"2~ In the sparse model, as the number of vortex bonds increases 
with energy remaining finite, the temperature T decreases; this is the case 
here, too (contrast Fig. 8 with Fig. 9). As a consequence, if a vortex 
"liquid" is imbedded in a Eulerian flow, in which vortex lines are stretched, 
the temperature of the vortex will decrease until the transition line B'D is 
reached. The system cannot go any further without energy loss or a discon- 
tinuity in the number of vortex legs. This situation is discussed at length in 
ref. 4. 

Along the constant energy line,/a increases as s, the fraction of bonds 
that are occupied, increases. The relation /a=p(s )  is determined by the 
statistics. In a classical fluid, p increases as the vortices are stretched, 
because incompressibility reduces vortex cores and increases the corre- 
sponding energy. Under plausible assumptions on the distribution of 
vorticity in a vortex cross section, one can also calculate/a = #(s), and the 
two functions of s do not coincide. This observation has been made before, 
in the context of a microcanonical modelJ 8) The conclusion is that to 
accommodate a constant or slowly varying energy with vortex stretching, 
vorticity must stretch into a nonuniform grid, creating nonuniformly active 
subregions and thus intermittency. 14,8,22~ 

The main differences between the model here and the sparse model are 
(i) the phase transition has shifted from the/~ = 0  line into the/~ > 0 region 
and (ii) the transition from order to disorder is more abrupt in the sparse 
model. Both phenomena are probably the consequences of the freedom to 
self-intersect that the vortex lines have here; circulation is no longer a 
constant of the Monte Carlo "motion" and reconnection is freely allowed. 
Reconnection is well known to mitigate energy variations (see, e.g., ref. 36). 
To the extent that- the model here is a better cartoon of X Y  vortices than 
of hydrodynamical vortices, it highlights the differences between classical 
and quantum vortices. 
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10. CONSEQUENCES FOR THE D Y N A M I C S  OF SUPERFLUlD 
VORTICES 

Our model, though it has a peculiar dimensionality and fails to exhaust 
all vortex configurations, provides a qualitative description of superfluid 
vortex motion if that motion can be assumed to be in some correspondence 
with the behavior of XY-model vortices. 

Superfluid systems can maintain a constant temperature and the 
behavior of their vortices is affected, and indeed controlled, by the tem- 
perature of the ambient fluid. Superfluid vortices are then coupled to the 
molecular degrees of freedom of the fluid, presumably through vortex/wave 
interactions; thus vortex stretching is limited (see Fig. 9). This conclusion 
agrees well with the visual observation of superfluid vortices, which 
look smooth, and with standard results on their stretching behavior; for 
example, the rate of change dL/dt of the line length L per unit volume is 
dL/dt ~ L in a classical fluid, (41 while it is ~L3/2w in a superfluid, where w 
is a "counterflow" velocity that vanishes at T; .  (37) 

These obsrvations raise the question of what equations of motion 
describe the temporal evolution of superfluid vortices. The Euler equations 
for incompressible flow are not compatible with constant T, and we have 
already pointed out above that the quantization of circulation is not a 
major effect. The important qualitative difference between classical and 
superfluid vortices is that the latter do not have to move at the velocity of 
the fluid that surrounds them. ~37~ Schwarz, 138~ following Feynman, has 
proposed that superfluid vortex motion can be described by the local self- 
induction approximation with HaU-Vinen friction and reconnection added. 
Unfortunately, his paper is marred by numerical errors and an irrelevant, 
and erroneous, claim that the self-induction approximation approximates 
Euler (i.e., classical) vortex motion. ~39'4~ The self-induction approximation 
preserves arc length and thus forbids stretching, and may well be a 
better basis for a phenomenological description than Euler vortex motion. 
Reconnection, not allowed by the Euler equations, has been seen to be 
an important feature of X Y  vortices and thus presumably of superfluid 
vortices (as well as of viscous vortices, not discussed here~4~). It likely that 
the correct description would be something intermediate between Euler 
vortex motion and self-induction motion; possible candidates can be found, 
e.g., in Klein and Majda. ta~) We shall present an exhaustive analysis of the 
possibilities as well as analysis of the effect of HaU-Vinen friction in a 
separate publication. 

11. GENERAL CONCLUSIONS 

We have presented a simplified model of vortex equilibria on a lattice 
which has reasonable qualitative properties and provides information 
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a b o u t  the p roper t i e s  of  the " p o l y m e r i c "  mode l s  of  tu rbu lence  as well as a 

useful basis for specu la t ion  on superf lu id  vor tex  mo t ion .  

T h e  m e t h o d o l o g y  can  be ex tended  to t h r ee -d imens iona l  vo r t ex  equi-  

l ibr ia  as well as to o the r  d e f e c t - d o m i n a t e d  stat is t ical  p h e n o m e n a ,  as will be 
shown  in subsequen t  work.  
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